On continuous orbit equivalence rigidity for virtually cyclic group actions

نویسندگان

چکیده

We prove that any two continuous minimal (topologically free) actions of the infinite dihedral group on an compact Hausdorff space are continuously orbit equivalent only if they conjugate. also show above fails we replace by certain other virtually cyclic groups, e.g., direct product integer with non-abelian finite simple group.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbit equivalence rigidity

Consider a countable group Γ acting ergodically by measure preserving transformations on a probability space (X,μ), and let RΓ be the corresponding orbit equivalence relation on X. The following rigidity phenomenon is shown: there exist group actions such that the equivalence relation RΓ on X determines the group Γ and the action (X,μ,Γ) uniquely, up to finite groups. The natural action of SLn(...

متن کامل

Conjugacy, orbit equivalence and classification of measure preserving group actions

We prove that if G is a countable discrete group with property (T) over an infinite subgroup H < G which contains an infinite Abelian subgroup or is normal, then G has continuum many orbit inequivalent measure preserving a.e. free ergodic actions on a standard Borel probability space. Further, we obtain that the measure preserving a.e. free ergodic actions of such a G cannot be classified up to...

متن کامل

Orbit equivalence rigidity and bounded cohomology

We establish new results and introduce new methods in the theory of measurable orbit equivalence, using bounded cohomology of group representations. Our rigidity statements hold for a wide (uncountable) class of groups arising from negative curvature geometry. Amongst our applications are (a) measurable Mostow-type rigidity theorems for products of negatively curved groups; (b) prime factorizat...

متن کامل

Orbit Equivalence and Von Neumann Rigidity for Actions of Wreath Product Groups

of the Dissertation Orbit Equivalence and Von Neumann Rigidity for Actions of Wreath Product Groups

متن کامل

Rigidity for convergence group actions Preliminary version

Suppose G is a hyperbolic group whose boundary ∂∞G has topological dimension k. If ∂∞G is quasi-symmetrically homeomorphic to an Ahlfors kregular metric space, then, modulo a finite normal subgroup, G is isomorphic to a uniform lattice in the isometry group Isom(Hk+1) of hyperbolic (k+1)-space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Groups, Geometry, and Dynamics

سال: 2023

ISSN: ['1661-7207', '1661-7215']

DOI: https://doi.org/10.4171/ggd/709